LASER TECHNOLOGY


A laser is an electronic-optical device that emits coherent light Radiation. The term "laser" is an acronym for Light Amplification by stimulated Emission of Radiation.

A typical laser emits light in a narrow, low-divergence monochromatic (single-coloured, if the laser is operating in the visible spectrum), beam with a well-defined wavelength. In this respect, laser light is in sharp contrast with such light sources as the incandescent light bulb, which emits light over a wide area and over a wide spectrum of wavelengths.

The first working laser was demonstrated on May 16, 1960 by Theodore Maiman at Hughes Research Laboratories. Since then, lasers have become a multi-billion dollar industry. The most widespread use of lasers is in optical storage devices such as compact disc and DVD players, in which the laser (a few millimeters in size) scans the surface of the disc. Other common applications of lasers are bar code readers, laser printers and laser pointers.

In industry, lasers are used for cutting steel and other metals and for inscribing patterns (such as the letters on computer keyboards). Lasers are also commonly used in various fields in science, especially spectroscopy, typically because of their well-defined wavelength or short pulse duration in the case of pulsed lasers. Lasers are used by the military for range finding, target identification and illumination for weapons delivery. Lasers used in medicine are used for internal surgery and cosmetic applications.

Design
A laser consists of a gain medium inside a highly reflective optical cavity, as well as a means to supply energy to the gain medium. The gain medium is a material with properties that allow it to amplify light by stimulated emission. In its simplest form, a cavity consists of two mirrors arranged such that light bounces back and forth, each time passing through the gain medium. Typically one of the two mirrors, the output coupler, is partially transparent. The output laser beam is emitted through this mirror.

Light of a specific wavelength that passes through the gain medium is amplified (increases in power); the surrounding mirrors ensure that most of the light makes many passes through the gain medium, being amplified repeatedly. Part of the light that is between the mirrors (that is, within the cavity) passes through the partially transparent mirror and escapes as a beam of light.
The process of supplying the energy required for the amplification is called pumping. The energy is typically supplied as an electrical current or as light at a different wavelength. Such light may be provided by a flash lamp or perhaps another laser. Most practical lasers contain additional elements that affect properties such as the wavelength of the emitted light and the shape of the beam.
Although the laser phenomenon was discovered with the help of quantum physics, it is not essentially more quantum mechanical than other light sources. The operation of a free electron laser can be explained without reference to quantum mechanics.




Previous
Next Post »